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Chaotic mixing, induced by breakup and reformation of a magnetic chain under the influence of a rotating
magnetic field, is studied. A direct simulation method combining the Maxwell stress tensor and a fictitious
domain method is employed to solve flows with suspended magnetic particles. The motion of the chain is
significantly dependent on the Mason number �Ma�, the ratio of viscous force to magnetic force. The degree of
chaos is characterized by the maximum Lyapunov exponents. We also track the interface of two fluids in time
and calculate the rate of stretching as it is affected by the Mason number. The progress of mixing is visualized
via a tracer particle-tracking method and is characterized by the discrete intensity of segregation. Within a
limited range of Mason number, a magnetic chain rotates and breaks into smaller chains, and the detached
chains connect again to form a single chain. The repeating topological changes of the chain lead to the most
efficient way of chaotic mixing by stretching at chain breakup and folding due to rotational flows.
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I. INTRODUCTION

The area of micro-total-analysis systems ��-TAS� �1�,
also known as lab-on-a-chip, integrating laboratory functions
in biology and chemistry on a single chip and handling ex-
tremely small fluid volumes, has been recently growing rap-
idly. The increasing interest in �-TAS has stimulated the
development of microfluidic components like valves, pumps,
mixers, reactors, sensors, and actuators to achieve better and
more dedicated performance, satisfying specific require-
ments in different application areas �2�. One of the key com-
ponents in the system is a micromixer �3� to which the theory
of chaotic mixing �4,5� has been recently extensively applied
to achieve enhanced mixing. Under typical operating condi-
tions, flows in these devices are laminar and molecular dif-
fusion across the microchannels is slow, which makes an
efficient mixing in microfluidic devices difficult to achieve.

Since the appearance of the concept of �-TAS, suspen-
sions of magnetic particles are being used in microfluidics
for chemical or biomedical applications �6,7�. Mostly, mag-
netic particles are used as mobile substrates for bio-assays to
be transported to the desired locations �8,9� or as stirring
agents to achieve enhanced mixing �9,10�. When exposed to
uniform magnetic fields externally applied, magnetically po-
larizable particles acquire dipole moments and the induced
moments interacting with each other lead to the formation of
chainlike structures or clusters of particles aligned with the
field direction. As for the effect of rotating magnetic fields on
the dynamics of magnetic chains, several experimental stud-
ies showed that the structure and dynamics of chains are
influenced by the frequency of the fields �11–14�. Recently,
Calhoun et al. �15� studied mixing by a magnetic chain in a
rotating magnetic field using a numerical scheme based on
the lattice Boltzmann method �LBM� and the dipole-dipole
interaction model. They claimed that mixing is highly af-
fected by a dimensionless number called the Mason number,
the ratio of viscous force to magnetic force, and showed the

existence of an optimal Mason number for enhanced mixing
using the standard deviation of a scalar concentration of a
circular blob. However, their mixing analysis is based on a
local measure of mixing, which is not relevant to an in-depth
mixing analysis and requires further investigation. Motivated
by these works, in this study, we investigate the use of mag-
netic chains formed by paramagnetic particles as active mi-
crostirrers for microfluidic mixing, which have attractive ap-
plications in diagnostic lab-on-a-chip devices.

As a fundamental study of chaotic mixing, induced by a
magnetic chain under the influence of a rotating magnetic
field, we aim to investigate the dynamics of the chain, the
flow characteristics induced, and the subsequent mixing in
detail. For these purposes, we employ a direct numerical
simulation method �16�, which is based on a fictitious do-
main method �17� and the finite-element method. The forces
resulting from magnetic interactions between particles are
implemented through the Maxwell stress tensor �18,19�,
which is a different approach from the dipole-dipole interac-
tion model �12,15�. The numerical method enables us to take
into account both hydrodynamic and magnetic interactions in
a fully coupled manner. As a model problem, we choose a
two-dimensional �2D� liquid-filled circular cavity with sus-
pended circular paramagnetic particles, initially forming a
chain, under the influence of a rotating magnetic field.

The paper is organized as follows. First, we introduce the
problem and the governing equations to solve the problem,
resulting in the final weak formulations of the finite-element
method. Then, the dynamics of the chain and the character-
istics of the induced flow, influenced by topological changes
such as breakup and reformation of the chain, will be dis-
cussed with an emphasis on the effect of the Mason number.
The degree of chaos in the cavity is characterized by the
maximum Lyapunov exponents. We also track the interface
of two fluids to show detailed deformation patterns with
flow. Finally, we show the progress of mixing via interface
tracking and colored tracer particle tracking. Chaotic mixing
dependent on the Mason number is characterized using a
measure of mixing, called the discrete intensity of segrega-
tion, based on the distribution of the tracer particles through-
out the whole fluid domain.*Corresponding author: m.a.hulsen@tue.nl
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II. MODELING

A. Problem definition

As depicted in Fig. 1, the problem chosen is flow in a
two-dimensional liquid-filled circular cavity with N para-
magnetic particles, subjected to a rotating magnetic field,
initially forming a chain aligned horizontally with its center
at the cavity center. The particles are circular with the same
radius a. In this circular cavity, the hydrodynamic interaction
between the cavity wall and the chain is independent of the
angular position of the chain. We use a symbol P�t� for
�i=1

N Pi�t� as a collective region occupied by particles at a
certain time t. The fluid domain is denoted by � \ P�t� with
the whole domain being �. The externally applied magnetic
field is the only driving force to actuate particles and subse-
quently to induce flow. In this case, the magnetic flux density
B0 on the cavity boundary has the form B0=B0�cos��t�ex

+sin��t�ey�, where B0 is the magnitude of the magnetic flux
density, � the angular frequency of the rotating field, and t
the time. Thus, the strength of the magnetic field applied
externally is constant, but the direction of the field is chang-
ing with a constant angular frequency �.

The fluid is assumed to be nonmagnetic with a magnetic
permeability �0 and a constant viscosity �. The fluid flow is
assumed to be governed by viscous forces and magnetic in-
teractions between particles, neglecting effects of inertia. The
particles are assumed to be non-Brownian, inertialess, and
paramagnetic with a constant permeability �p, but they do
interact with each other via hydrodynamic and magnetic in-
teractions. The particles are magnetically neutral in the ab-
sence of a magnetic field applied externally, but magnetized
under the influence of an external magnetic field. A linear
relation between B and H is assumed, neglecting magnetic
saturation, which is an approximation for relatively small
field strengths.

B. Magnetic problem

We assume that the magnetic field is governed by magne-
tostatics, for which the governing Maxwell equations are
written as

� � H = J , �1�

� · B = 0, �2�

where H is the magnetic field intensity, J the current density,
and B the magnetic flux density. The constitutive equation
relating B and H is B=�H, where � denotes the magnetic
permeability of a linear isotropic medium. In general, to
solve the two Maxwell equations, the two first-order partial
differential equations are converted into a second-order par-
tial differential equation, involving only one field variable
called the magnetic vector potential A �18�. The magnetic
flux density is represented by the curl of the magnetic vector
potential, i.e., B=��A, which satisfies Eq. �2�. Then, the
resulting partial differential equation for A is given by

� � � 1

�
� � A� = J . �3�

At a current-free interface between two media—for example,
a fluid-particle interface with different magnetic
permeabilities—the magnetic fields should satisfy two conti-
nuity equations, given by

n · �Bf − Bp� = 0 , �4�

n � �Hf − Hp� = 0 , �5�

where n is a unit vector normal to the interface pointing from
the particle domain to the fluid and the variables with the
subscript “f” and “p” represent those variables evaluated
from the fluid domain and the particle domain, respectively.
Equations �4� and �5� represent the continuity of the normal
component of B and the tangential component of H at the
interface.

In a two-dimensional Cartesian coordinate system, assum-
ing a vertical current, J=Jez, which is independent of the
coordinate z, the governing equation in terms of the magnetic
potential becomes

−
�

�x
� 1

�r

�A

�x
� −

�

�y
� 1

�r

�A

�y
� = �0J , �6�

where �r denotes the relative permeability, �r=� /�0, and A
the z component of the magnetic vector potential A. Once the
magnetic potential A is found, the components of the mag-
netic flux density, B= �Bx ,By�, are computed by

Bx =
�A

�y
, By = −

�A

�x
. �7�

The magnetic flux density is given at a cavity boundary as an
essential boundary condition. Therefore, the values of the
magnetic potential A may be explicitly defined at the bound-
ary via a Dirichlet boundary condition. In a two-dimensional
Cartesian coordinate system, the form of A at the boundary is
specified by the parameters A0, A1, and A2, as follows:

A = A0 + A1x + A2y , �8�

where A0 is an arbitrary constant �here taken as zero, A0=0�.
From Eq. �7�, the two coefficients A1 and A2 are given by
A1=−B0y and A2=B0x for the prescribed external flux density

P1 P2 PN-1 PN

2a

wΓΩ

x

y
tθ ω=

0B

FIG. 1. �Color online� Schematic representation of a magnetic
chain, formed by N circular particles with the radius a, suspended in
a two-dimensional liquid-filled circular cavity under the influence
of a rotating magnetic field. The magnetic field is rotating with a
constant angular frequency �. The whole cavity is denoted by �
and the boundary of the cavity is denoted by �w.
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B0= �B0x ,B0y�. In terms of the magnetic potential A, the two
continuity conditions at fluid-particle interfaces, Eqs. �4� and
�5�, are represented by

Af = Ap, �9�

1

�rf

�Af

�n
=

1

�rp

�Ap

�n
, �10�

where �
�n =n ·�.

The body force fm experienced by materials in a magnetic
field is represented by the divergence of the Maxwell stress
tensor Tm, i.e., fm=� ·Tm, where Tm=��HH− 1

2H2I�. Here,
fm is regarded as a force density per volume �per area in the
2D case� exerted on the material body subjected to the mag-
netic field, which contributes to the momentum balance
equation as an additional body force.

C. Flow problem

We assume that the fluid flow is governed by the Stokes
equations. The particles are assumed to be force free and
torque free, and the inertia of the particles is negligible. The
force fm working on magnetic particles is treated as a body
force added to the momentum balance equation, as given in
Eq. �11�. As for the particle domain P�t�, we employ the
rigid-ring description �17�, where the same fluid as in the
fluid domain also fills the particle domain and the rigid-body
constraint is imposed on the particle boundaries only. This
description enables us to solve the same governing equations
for both �fluid and particle� domains, reducing the number of
unknowns for the rigid-body constraints. It should be noted
that the rigid-ring description is valid only for flows without
inertia.

For the entire domain �, the set of equations describing
the flow with rigid magnetic particles is represented by

− � · � = � · Tm in � , �11�

� · u = 0 in � , �12�

� = − pI + 2�D in � , �13�

u = Ui + �i � ri on � Pi�t� �i = 1, . . . ,N� , �14�

u = 0 on �w, �15�

where � is the Cauchy stress tensor, Tm the Maxwell stress
tensor, u the velocity, p the pressure, � the viscosity, D the
rate-of-deformation tensor, Ui the translational velocity of
the ith particle, �i the angular velocity of the ith particle, and
ri=x−Xi with x the position vector of a point on the ith
particle boundary �Pi, and Xi the position vector of the cen-
ter of the ith particle. Equations �11�–�13� are the momentum
balance equation, the continuity equation, and the constitu-
tive relation for the fluid domain, respectively. Equations
�14� and �15� are the constraints for rigid-body motion of the
particles and the essential boundary condition at the solid
wall, respectively.

In addition to the above-mentioned governing equations,
boundary conditions, and constraints, one needs to solve the
kinematic equations for the evolution of particle positions
with time t, represented by

dXi

dt
= Ui, Xi�0� = Xi,0, �16�

d�i

dt
= �i, �i�0� = �i,0. �17�

Finally, balance equations are needed for the drag force and
torque on particles to determine the unknown rigid-body mo-
tions �Ui ,�i� of the particles. In the absence of inertia, the
balance equations are represented as follows:

Fi = �
�Pi

+�t�
�� + Tm� · n dS = 0 , �18�

Ti = �
�Pi

+�t�
ri � ��� + Tm� · n�dS = 0 , �19�

where Fi is the sum of the hydrodynamic drag and magnetic
force, Ti is the sum of the hydrodynamic torque and mag-
netic torque working on a rigid particle, and n the outward
normal vector at the particle boundary.

III. NUMERICAL METHODS

A. Magnetic problem

The weak form of the Poisson equation �6� for the mag-
netic potential A is given as follows: find A�S such that

�
�

1

�r
��A · �	�dA = �

�

�0J dA , �20�

for all 	�S0 with S= �A�H1��� with A= Ā at �w	 and
S0= �	�H1��� with 	=0 at �w	. The continuity of A, Eq.
�9�, holds in the standard finite-element formulation. The
continuity of the tangential component of H, which is repre-
sented by the continuity of flux in the diffusion equation of
the magnetic potential A, Eq. �10�, is weakly satisfied in the
finite-element formulation. The weak form is used to obtain
an approximate solution using the finite-element method
with biquadratic interpolation for A. The resulting matrix
equation is solved using a sparse Gauss elimination method,
HSL/MA57 �20�, to solve a symmetric matrix.

B. Flow problem

The fluid flow problem, including interactions between
fluid and rigid particles, is solved by using a fictitious do-
main method and the finite-element method. We use a ficti-
tious domain method to treat rigid-body constraints on par-
ticle boundaries. In the derivation of the weak form,
following the approach of �21�, fluid-particle interactions are
implicitly treated through the combined weak formulation,
where the hydrodynamic force and torque on the particle
boundaries are canceled exactly. In the combined weak for-
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mulation, the rigid-body constraint is enforced by the con-
straint equation using a Lagrange multiplier �p,i defined on
the particle boundary �Pi.

Let us first define the combined velocity and variational
space for the velocity, which is denoted by V:

V = �
�u,Ui,�i�
u � H1���2, Ui � R2, �i � R,

u = Ui + �i � ri on � Pi�t� and u = 0 on �w	
�21�

for i=1, . . . ,N. For a given particle configuration Xi
�i=1, . . . ,N�, the weak form for the entire domain � can be
stated as follows: find �u ,Ui ,�i��V, p�L2���, and
�p,i�L2(�Pi�t�) �i=1, . . . ,N� such that

�
�

2�D�v�:D�u�dA − �
�

�� · v�p dA

+ �
i=1

N

�v − �Vi + �i � ri�,�p,i�Pi

= − �
�

D�v�:TmdA , �22�

− �
�

q�� · u�dA = 0, �23�

�	p,i�x�,u�x� − �Ui + �i � ri��Pi
= 0, �24�

for all �v ,Vi ,�i��V, q�L2���, and 	p,i�L2(�Pi�t�)
�i=1, . . . ,N�. In the weak formulation, instead of using the
divergence of the Maxwell stress tensor as it is, we applied
integration by part and the Gauss theorem. This form allows
us to circumvent differentiation of the Maxwell stress tensor,
which is discontinuous at fluid-particle interfaces. We use
biquadratic interpolation for the velocity and bilinear inter-
polation for the pressure, the so-called Q2 /Q1 element. As
for the rigid-body constraints, the weak form is approxi-
mated by point collocation �17�. The resulting matrix equa-
tion is solved by the same direct sparse matrix solver as used
in the magnetic problem.

Particle positions are updated by integrating the evolution
equations �16�, using the rigid-body motions of the particles
obtained as a part of the solution. We employ explicit time
integration schemes. The explicit Euler method �Eq. �25�� is
used at the first time step and the second-order Adams-
Bashforth method �Eq. �26�� from the second time step
onwards:

Xi
n+1 = Xi

n + 
tUi
n, �25�

Xi
n+1 = Xi

n + 
t�3

2
Ui

n −
1

2
Ui

n−1� , �26�

where variables with superscripts n−1, n, and n+1 represent
those evaluated at the previous time, the present time, and
the next time step, respectively.

C. Remarks

We employ a direct numerical scheme �16� taking into
account both hydrodynamic and magnetic interactions in a
coupled manner, using a fictitious domain method and the
Maxwell stress tensor formulation. The dipole-dipole inter-
action model used by other authors �12,15� is quite effective
if the length scale of the field nonuniformity is much larger
than the particle size �22,23�. However, this assumption may
be violated in microfluidic applications because practical
sources of magnetic fields—for example, permanent magnets
or current-carrying wires—become smaller with miniaturiza-
tion, leading to a decrease in the length scale of the field
nonuniformity as well. Therefore, in applications with the
particle size comparable to the length scale of the field non-
uniformity, due to closely spaced particles or particles close
to a magnetic source, the present approach is more favorable
than that based on the dipole moment method. In addition,
the present scheme has several advantages from the view-
point of implementation: �i� easy implementation in a code
based on the finite-element method, regardless of the shape
of particles, �ii� easy treatment of inhomogeneous magnetic
permeability, possibly also depending on the magnetic field
intensity, and �iii� direct simulation of particulate flows with
both hydrodynamic and magnetic interactions. Finally, in this
work, we did not employ an artificial particle-particle colli-
sion scheme by choosing a relatively small time step in a
sufficiently refined mesh. In the problems introduced, the
particle overlap could be avoided or minimized to a negli-
gible extent, even in problems involving chain breakup and
reformation, which will be introduced shortly.

IV. RESULTS AND DISCUSSION

We first introduce the result of a scaling analysis for the
momentum balance equation �11�, aiming to extract nondi-
mensional parameters influencing the dynamics of the chain
and the subsequent fluid flow. Next introduced are the dy-
namics of a magnetic chain, flow characteristics, interface
tracking, and mixing analysis at several Mason numbers �see
Eq. �32��, ranging from 0.0005 to 0.05, in which we observe
three regimes of Mason number with distinct dynamics of
the chain and flow characteristics. In the simulations, we use
a fixed value of the magnetic susceptibility of the particles,
�p=1,1 and assumed that there is no current source, i.e., J
=0. The ratio of particle radius to cavity radius is a /Rc
=0.05, so the area fraction of the particles equals 0.0425 with
the number of particles, N=17. The circular cavity is dis-
cretized into 14 400 nine-node quadrilateral elements. The
number of collocation points describing the particle bound-
ary is determined such that there are approximately two col-
location points per element, based on previous numerical ex-
periments �16�. The time period of the rotating magnetic field
is 2� in dimensionless time. The time step is 0.02 in nondi-
mensional units.

1We use a typical value of the magnetic susceptibility �p for com-
mercially available magnetic beads—for example, polystyrene
beads with dispersed superparamagnetic nanoparticles �6,7�.
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A. Scaling analysis

Nondimensional variables �with a superscript �� are given
by

x� =
x

lc
, y� =

y

lc
, �27�

u� =
u

uc
, �28�

p� =
p

pc
, �29�

Tij
� =

Tij − �0Hc
2

��p − �0�Hc
2 , �30�

where lc denotes a characteristic length, uc a characteristic
velocity, pc a characteristic pressure, and Hc the characteris-
tic magnetic field intensity. Here, we define the characteristic
length as a particle radius, lc=a. The characteristic time is
defined as the inverse of the angular frequency of the mag-
netic field, tc=�−1—thus, t�=�t. Then, the characteristic ve-
locity and pressure are defined as uc=a / tc=a� and pc
=�uc /a=��, respectively. The Maxwell stress tensor Tij is
nondimensionalized by the stress difference �with the refer-
ence being �0Hc

2� normalized by ��p−�0�Hc
2. The character-

istic magnetic field intensity is defined as Hc=H0=B0 /�0.
Then, the resulting nondimensional momentum equation be-
comes

��p� − ��2u� =
1

Ma
�� · T�. �31�

In Eq. �31�, Ma is the Mason number,2 which is the ratio of
viscous force to magnetic force under the influence of a ro-
tating magnetic field, defined by

Ma =
��

�0�pH0
2 , �32�

with �p being the magnetic susceptibility of the particles,
�p=�rp−1. The magnetic permeability �p is also one of the
parameters governing the dynamics of the chain, which in
this study is assumed to be constant. In this paper, therefore,
the Mason number used is defined for other parameters such
as the magnetic permeability, the ratio of particle size to
cavity size, and the area fraction of the particles being fixed.

At a lower Mason number magnetic forces are dominant,
while at a higher Mason number viscous forces are domi-
nant. With such parameters as the susceptibility of particles,

the particle area fraction, and the ratio of particle size to
cavity size being fixed, the Mason number is a key parameter
determining the dynamics of the chain and the characteristics
of the flow induced in a rotating magnetic field. In simula-
tions introduced in the following sections, we focus on the
effect of the Mason number on the chain motion, fluid flow,
and mixing.

B. Chain dynamics

Figure 2 depicts a series of deformation patterns of the
chain at six Mason numbers Ma=0.0005, 0.001, 0.002,
0.003, 0.005, and 0.05, illustrating that the dynamics of the
chain is significantly dependent on the Mason number. The
arrows in the figures indicate the direction of the applied
magnetic field at a certain nondimensional time.

At the two lower Mason numbers Ma=0.0005 and 0.001,
the chain rotates almost like a rigid chain following the ro-
tating field, but lags behind the field �see Figs. 2�a� and 2�b��.
Here, we observe an increased phase lag with the Mason
number. As the Mason number increases further, due to the
increased viscous drag and magnetic interactions among the
particles, chain breakup is observed at the three intermediate
Mason numbers Ma=0.002, 0.003, and 0.005. At Ma
=0.002, the chain is split into two chains, connecting again
to form a single chain, which takes places in an alternating

2The derived Mason number, Eq. �32�, has a different form from
those found in the literature �12–15�, with different proportionality
factors. The typical value of Ma, showing a transition in chain
dynamics, is O�10−3� in our flow problems. Higher values for the
Mason number may result from the use of a characteristic velocity
uc=Na� rather than uc=a� as used here. The value of the critical
Mason number showing transition may vary with a change of the
parameters �p, a /R, and N.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Dynamics of the chain at the six Mason numbers �a�
Ma=0.0005, �b� Ma=0.001, �c� Ma=0.002, �d� Ma=0.003, �e�
Ma=0.005, and �f� Ma=0.05. The shapes of the chain are plotted at
the nondimensional time t�=0, 1

2�, �, 3
2�, and 2� �from left to

right�. Here, the nondimensional time is defined as t�=�t and the
time period of the rotating field is 2�. The arrows indicate the
direction of the magnetic field.
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manner �see Fig. 2�c��. Especially, the shape of chain at the
moment of breakup, a reversed S-like structure, is quite simi-
lar to that observed experimentally by �13� �see also Fig. 3
for detailed deformation patterns at breakup�. At Ma=0.003,
as shown in Fig. 2�d�, the chain is broken into two chains as
well, but the two detached chains remain as separate chains
without joining together. In the third case, at Ma=0.005, the
chain is now folded and split into three chains and some
single particles, which also remain as separate chains �see
Fig. 2�e��. At an even higher Mason number Ma=0.05, the
chain behaves like a rigid body again, but on average, the
chain rotates with a frequency much lower than that of the
rotating field. On top of that, it oscillates with a frequency
close to that of the rotating field.

In summary, the dynamics of the chain is significantly
influenced by the Mason number and three distinct regimes
with different chain dynamics can be distinguished. At a
lower Mason number, the chain rotates following the field
with a phase lag, and the larger the Mason number, the
higher the phase lag. In the intermediate regime, with the
Mason number ranging from 0.002 to 0.01, chain breakup is
observed, with the number of detached chains increasing
with Mason number. In the third regime, where the Mason
number is higher than 0.01, the chain behaves as a rigid
chain again. The chain rotates in an overall sense, with an
additional oscillatory motion.

C. Flow characteristics

Now, we move our attention to flow characteristics in-
duced by the chain motion and, especially, to chaotic advec-

tion characterized by a spatial distribution of maximum
Lyapunov exponents. As a representative example, detailed
flow characteristics in the most interesting case of Ma
=0.002 will be discussed.

Figure 3 shows streamlines at the moment of breakup and
reformation of the chain at Ma=0.002. The flow induced by
the motion of the chain is characterized by two typical flow
portraits: a single rotating flow with one elliptic point and
two corotating flows with one hyperbolic point and two el-
liptic points, as schematically illustrated in Fig. 4. The two
flows have the following characteristics: �i� overall rotational
motion induced by the rotation of the chain and �ii� hyper-
bolic flow around the point of chain breakup, leading to a
large stretching of the fluid. In addition, the repetition of the
two flow portraits is known as an efficient way of inducing
chaotic mixing in macromixing and micromixing devices
�24,25�. Therefore, the alternation of these two types of flows
may be a good mixing protocol to achieve enhanced mixing
via chaotic advection induced by the flow with a magnetic
chain. At higher Mason numbers Ma=0.003, 0.004, and
0.005, the detached chains induce only two, three, or more
corotating flows, which we expect to be less effective as a
mixing protocol than the two alternating flows at Ma
=0.002.

Therefore, next we need to find out at which Mason num-
ber the flow creates more chaotic trajectories of fluid par-
ticles, which in turn results in better mixing. One of the
manifestations of chaos related to mixing is the sensitivity to
initial conditions determined by flow characteristics. A rapid

t *= 2.2 t *= 8.4

t *= 8.6t *= 2.4

t *= 8.8t *= 2.6

Break-up Reformation

FIG. 3. �Color online� Streamlines and chain configurations at
the moment of chain breakup �left� and reformation �right� at Ma
=0.002. At chain breakup, hyperbolic flow is clearly observed and
the deformed chain reveals a reverse S-like structure.

elliptic point

hyperbolic point

(a)

(b)

FIG. 4. Two typical flow portraits induced by the topological
changes of the chain at Ma=0.002: �a� one rotating flow with an
elliptic point and �b� two corotating flows with two elliptic points
and one hyperbolic point.
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divergence of initial conditions is a signature of chaotic sys-
tem, which is usually quantified by means of Lyapunov ex-
ponents �5,26�. Dynamical systems with n degrees of free-
dom have n different Lyapunov exponents i �i=1, . . . ,n�,

i�Y,Mi� = lim
x→�


dY
→0

�1

t
ln� 
dy



dY
�� , �33�

where dY represents an infinitesimal fluid element vector
with an initial orientation Mi=dY / 
dY
 and dy the vector at
time t. The presence of a positive Lyapunov exponent is a
signature of chaos in a flow system, showing an exponential
divergence of two neighboring particle orbits initially sepa-
rated by an infinitesimally small distance. To find the maxi-
mum Lyapunov exponent , we employ a numerical scheme
proposed by �26�, given by

 = lim
K→�

1

K
t�k=1

K

ln� dy�k�
dy�0�� , �34�

where 
t is the time step and dy�0� the initial separation
between two passive tracers in flow and dy�k� the separation
between the two tracers after k time steps. The idea in this
scheme is to follow two nearby orbits and to calculate their
average logarithmic rate of separation.

We calculated Lyapunov exponents using velocity solu-
tions obtained at six Mason numbers Ma=0.001, 0.002,
0.003, 0.004, 0.005, and 0.007. In all cases, calculations are
conducted to the finite time corresponding to approximately
12 rotations of the magnetic field, with the initial distance
between two nearby orbits dy�0�=10−12. Figure 5 depicts the
spatial distributions of maximum Lyapunov exponents in the
cavity at the six Mason numbers. The larger the area with
positive exponent, the larger chaotic region in the domain. To

quantitatively measure the degree of chaos, the area fraction
�=Ac /A is plotted as a function of Mason number �see Fig.
6�. Here, Ac is the area of the region with the Lyapunov
exponent larger than a cutoff value c, i.e., 
Ac=A
�c

, and
A is the area of the whole domain.

From Fig. 6, one can find an optimal Mason number at
which a flow system is the most chaotic. In the case of the
problem investigated, the optimal Mason number is indeed
found around Ma=0.002, where breakup and reformation of
the chain are taking place alternatingly as shown in Fig. 3.
Therefore, we can expect that mixing at this Mason number
will also be better than at the other Mason numbers, which
will be verified both qualitatively and quantitatively in the

FIG. 5. �Color online� Spatial distributions of the maximum Lyapunov exponent  at several Mason numbers Ma=0.001, 0.002, 0.003,
0.004, 0.005, and 0.007.
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FIG. 6. Area fraction ��� of the region with the Lyapunov ex-
ponent larger than a cutoff value c, defined by 
�=A
�c

/A,
where A is the area of the whole domain and 
A
�c

the area with
�c. At a Mason number around 0.002, the chaotic region is the
largest, indicating the existence of an optimal Mason number yield-
ing efficient chaotic mixing.

CHAOTIC MIXING INDUCED BY A MAGNETIC CHAIN IN … PHYSICAL REVIEW E 76, 066303 �2007�

066303-7



next two sections via interface tracking and colored tracer
tracking.

D. Interface tracking

The increase in the interfacial surface area �or interfacial
length in the 2D case� may be a measure of mixing for mix-
tures without diffusion. In this section, we track the interface
between “black” and “white” fluids �see Fig. 7� in time, at-
tempting to investigate in-depth deformation patterns of fluid
elements and to characterize the increase of interfacial
length. Here, we are mainly concerned with the kinematics
of fluid motion. An adaptive front-tracking method �27� is
employed to precisely track interfaces undergoing compli-
cated deformation patterns. This method makes it possible to
track interfaces that experience an exponential increase in
length due to chaotic advection, accurately preserving the
area.

Figure 7 shows the evolution of the interface at four Ma-
son numbers Ma=0.001, 0.002, 0.003, and 0.005, with the
initial configuration illustrated in the first column. As ex-
pected from the Lyapunov exponent shown in Fig. 5, the
evolution of the interface is affected by the Mason number.
From the deformation patterns, we clearly see how the fluid
deforms with flow. A large stretching of fluid elements is
observed near the tips of the rotating chains and at the points
of chain breakup, and the stretched fluid elements are folded
by the rotational flows. The detailed mechanism of stretching
and folding generated by the chain motion is dependent on
the Mason number.

The increase of the interfacial length is characterized by
the length stretch of the fluid elements, as shown in Fig. 8.
The length stretch � is defined as �= l�t�� / l0, where l�t�� is
the interfacial length at time t� and l0 is the initial interfacial
length. The length stretch shows an exponential growth in all

the cases. Although the largest stretching is found at Ma
=0.001, stretching is constrained to a narrow ring between
the cavity wall and both ends of the chain and, consequently,
mixing is poor �see Fig. 7�a��. For most applications, not
only the total amount of interfluid interfaces is important, but
also their spatial distribution in the bulk of the fluid. Appar-
ently, the length stretch as such is not a proper measure of
mixing quality, as was already concluded by �28� in optimi-
zation of the Kenics static mixer. The exponential length
stretch at Ma=0.002 originates from stretching and folding
induced by the alternating topological changes of the chain.
From the deformation patterns in Fig. 7 and the spatial dis-
tributions of the maximum Lyapunov exponents in Fig. 5,
one can expect that flows induced by breakup and reforma-
tion of the chain are better for mixing than those by a singe
chain, which will be discussed in the following section.

E. Mixing analysis

In the absence of precise periodicity in these flows, the
mapping method �29�, as successfully applied in optimizing
different mixers, cannot be used. Progress of mixing can,
however, also be visualized using a tracer-tracking method
�30�, yielding also both qualitative and quantitative measures
for mixing. In the beginning, a number of passive tracer par-
ticles, labeled with either red or blue indicating the species of
a fluid, are uniformly introduced in the entire domain. Then,
the positions of all tracer particles are tracked using the tran-
sient velocity field stored at each time step. Tracking of in-
dividual tracer particles is accomplished using a fourth-order
Runge-Kutta method to the time one wants to analyze. The
essence of this stage is the colors labeled to the tracers ac-
cording to their species, resulting in the distribution of col-
ored tracers at a time t�. The obtained color patterns of the
tracers provide the intrinsic information on a certain mixing
state, on which a mixing measure will be based. In what
follows, we first introduce the measure of mixing and then
show the results.

FIG. 7. �Color online� Deformation of the interface between
“black” and “white” fluids for the four Mason numbers �a� Ma
=0.001, �b� Ma=0.002, �c� Ma=0.003, and �d� Ma=0.005. The
evolution of the deforming interface is plotted at the nondimen-
sional time t�=0, 2, 10, 20, and 30 �from left�.
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FIG. 8. Evolution of the length stretch � of the interface for the
five Mason numbers Ma=0.001, 0.002, 0.003, 0.004, and 0.005.
Here, the length stretch is defined as �= l�t�� / l0, where l�t�� and l0

denote the interfacial length at time t� and at the initial state,
respectively.
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We employ a measure of mixing based on the intensity of
segregation. In general, the intensity of segregation is a mea-
sure of the deviation of the local concentration from the ideal
situation of a homogeneous state of the mixture, defined as
the second-moment variance of the concentration distribu-
tion:

I =
c

2

c̄�1 − c̄�
, �35�

where c
2 is the variance in the concentration over entire

domain � defined as

c
2 = �„c�x� − c̄…2�, �36�

where c�x� denotes the concentration at a point x and c̄ the
average concentration in the domain. The denominator of Eq.
�35� is defined such that the value of I always varies from
unity to zero with the progress of mixing. In a perfectly
mixed system, I=0, while in a completely unmixed system,
I=1. For more details on the definition, we refer to the origi-
nal work by �31�.

In this study, we define the concentration in a subdomain,
based on the tracer distribution and use a discrete version of
I, called the discrete intensity of segregation Id, as a measure
of mixing. For that purpose, we divide the cavity domain
into M cells �subdomains�, which differ from the finite-
element mesh, and count the number of red and blue tracers
at all cells constituting the cavity. Then, from a given tracer
distribution, we define the concentration of blue tracer Ci in

the ith cell, and the average concentration C̄, as follows:

Ci =
ni

b

ni
, �37�

C̄ = �
i=1

M

fiCi, �38�

where ni denotes the sum of red and blue tracers in the cell,
ni=ni

r+ni
b, with ni

r and ni
b being the number of red and blue

tracers in the cell, respectively, and f i is the tracer number
fraction, f i=ni /�ni, used as a weighting factor in averaging.
Finally, the discrete intensity of segregation Id is calculated
using

Id =
1

C̄�1 − C̄�
�
i=1

M

fi�Ci − C̄�2, �39�

which is a normalized variance in the concentration Ci. The
cavity is divided into 2300 cells, i.e., M =2300. We initially
introduce about 100 000 passive tracer particles with the
same number of red and blue tracers. Two initial configura-
tions, in which the interface of the two fluids is either verti-
cal or horizontal to the magnetic chain, initially aligned hori-
zontally, are chosen as two extreme cases. Each tracer has an
intrinsic property, an indicator of the species of fluid �in this
study represented by color�, together with its position in
time. Therefore, an initial configuration of tracers reflects the
initial condition of two fluids before mixing. The evolution
of colored tracers can qualitatively depict mixing of two spe-

cies and is used as a basis for the quantification of mixing.
Figures 9 and 10 show the evolution of the tracers for the

four Mason numbers Ma=0.001, 0.002, 0.003, and 0.005
�32�. For clarity of visualization, only blue tracers are shown
in the figures. An instantaneous distribution of the tracers
qualitatively reflects a mixing state and is used as a basis for
the quantification of mixing. At Ma=0.001, as depicted in

(a)

(b)

(c)

(d)

FIG. 9. �Color online� Progress of mixing visualized via a col-
ored tracer tracking at the nondimensional time t�=0, 2, 10, 40, and
80 �from left� for the four Mason numbers �a� Ma=0.001, �b� Ma
=0.002, �c� Ma=0.003, and �d� Ma=0.005. Although all the tracer
particles with either red or blue color were tracked to the nondi-
mensional time t�=80, for clarity, only the evolution of blue tracers
is shown. Initially, the interface between two fluids is perpendicular
to the chain, which is a more favorable initial configuration for
mixing, compared with the case with a horizontal interface as
shown in Fig. 10.

(a)

(b)

(c)

(d)

FIG. 10. �Color online� Progress of mixing visualized via a col-
ored tracer tracking at the nondimensional time t�=0, 2, 10, 40, and
80 �from left� at the four Mason numbers �a� Ma=0.001, �b� Ma
=0.002, �c� Ma=0.003, and �d� Ma=0.005. Initially, the interface of
the two fluids is aligned with the chain.
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Fig. 9�a�, we observe mixing to some degree, around the
chain and rim of the cavity. In the case of the coincident
interface with the chain �see Fig. 10�a��, however, mixing is
poor because of the chain acting as a barrier preventing the
two fluids from moving across. At the other Mason numbers,
where chain breakup is observed, mixing is less affected by
the initial configuration of the interface of the fluids. Figure
11 plots the discrete intensity of segregation Id as a function
of time t�. For the given initial configuration of the tracers,
the mixing rate and the final mixing state, measured by Id,
are significantly influenced by the Mason number and also
affected by the initial configuration of the two fluids. Accord-
ing to the tracer distributions and plots of the discrete inten-
sity of segregation, mixing at Ma=0.002 is the best, regard-
less of the initial configuration of the interface of the two
fluids. From the discrete intensity of segregation at t�=80 as
a function of the Mason number �see Fig. 12�, we conclude
that there is a limited range of Mason numbers, for which
efficient mixing can be achieved.

V. CONCLUSION

The use of magnetic chains, formed by magnetic particles,
as active microstirrers, has attractive applications in future
diagnostic lab-on-a-chip devices. We carried out a funda-
mental study on chaotic mixing induced by a magnetic chain

in the presence of a rotating magnetic field, concentrating on
the dynamics of the chain, the characteristics of the flow
induced, and the route to chaotic mixing. A direct simulation
method based on the Maxwell stress tensor and a fictitious
domain method has been utilized to solve flows with a sus-
pended magnetic chain in a two-dimensional circular cavity.
The numerical method enables us to take into account both
hydrodynamic and magnetic interactions in a fully coupled
manner. The motion of the chain, fluid flow, and mixing are
significantly influenced by the Mason number, the ratio of
viscous force to magnetic force.

We observe three regimes of Mason number with distinct
dynamics of the chain. At a lower Mason number, the chain
behaves like a rigid body; thus, it rotates as a single chain
following the field, but lags behind the field. In the interme-
diate Mason numbers, where 0.001�Ma�0.01, chain
breakup is observed with the number of detached chains in-
creasing with the Mason number. At the Mason number
around Ma=0.002, the two split chains rejoin together, form-
ing a single chain again, and this splitting and reconnecting
takes place in an alternating manner. At Mason numbers
higher than 0.002 and less than 0.01, the split chains remain
separate without connecting again. In the third regime, where
Ma�0.01, we observe a rigid-chain behavior again. The
chain rotates in an overall sense, with an extra oscillatory
motion superposed. The alternating breakup and reformation
of the chain at Ma=0.002 creates two typical flows: one
rotating flow and two corotating flows. The two repeating
flows result in the largest chaotic region, characterized by the
maximum Lyapunov exponent, and induce an exponential
increase of the interfacial length. The progress of mixing is
visualized via a colored-tracer particle-tracking method. Us-
ing the discrete intensity of segregation based on the distri-
bution of the tracers, we quantitatively characterized the
progress of mixing, dependent on the Mason number and
also on the initial configuration of the two fluids to be mixed.
From the results of the mixing analysis, the alternating topo-
logical changes of the chain, breakup and reformation,
turned out to be the key mechanism of chaotic mixing, which
lead to stretching at chain breakup and folding by the rota-
tional flows, and therefore an optimal Mason number exists
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FIG. 11. Discrete intensity of segregation Id with time for the
two different initial configurations of the two fluids labeled with red
or blue: �a� vertical interface �Fig. 9� and �b� horizontal interface
�Fig. 10�. Note that smaller Id corresponds to better mixing.
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around Ma=0.002.
In addition to the Mason number, other parameters such

as the magnetic permeability of the particles, particle size,
cavity geometry, and frequency modulation of a rotating

magnetic field have significant influences on the chain mo-
tion. These are subject of future study as well as the influ-
ence of non-Newtonian fluids on the chain dynamics, fluid
flow, and subsequent mixing.
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